Survey of Neural Transfer Functions

نویسنده

  • Norbert Jankowski
چکیده

The choice of transfer functions may strongly influence complexity and performance of neural networks. Although sigmoidal transfer functions are the most common there is no a priori reason why models based on such functions should always provide optimal decision borders. A large number of alternative transfer functions has been described in the literature. A taxonomy of activation and output functions is proposed, and advantages of various non-local and local neural transfer functions are discussed. Several less-known types of transfer functions and new combinations of activation/output functions are described. Universal transfer functions, parametrized to change from localized to delocalized type, are of greatest interest. Other types of neural transfer functions discussed here include functions with activations based on nonEuclidean distance measures, bicentral functions, formed from products or linear combinations of pairs of sigmoids, and extensions of such functions making rotations of localized decision borders in highly dimensional spaces practical. Nonlinear input preprocessing techniques are briefly described, offering an alternative way to change the shapes of decision borders.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Predicting the Coefficients of Antoine Equation Using the Artificial Neural Network (TECHNICAL NOTE)

Neural network is one of the new soft computing methods commonly used for prediction of the thermodynamic properties of pure fluids and mixtures. In this study, we have used this soft computing method to predict the coefficients of the Antoine vapor pressure equation. Three transfer functions of tan-sigmoid (tansig), log-sigmoid (logsig), and linear were used to evaluate the performance of diff...

متن کامل

A Comparative Survey of Modeling Absorption Tower Using Mixed Amines

In natural gas treatment, the removal of CO2 and H2S in acid gases is a critical concern. There are various purification technologies that can be used for the removal of acid gas impurities. Absorption of acid gas into amines is one preferred method in gas industries. In the past, single amines was used, but recently in order to improve absorption performance, mixed amines with different solubi...

متن کامل

Comparison of Three Soft Computing Methods in Estimating Apparent Shear Stress in Compound Channels

Apparent shear stress acting on a vertical interface between the main channel and floodplain in a compound channel serves to quantify the momentum transfer between sub sections of this cross section. In this study, three soft computing methods are used to simulate apparent shear stress in prismatic compound channels. The Genetic Algorithm Artificial neural network (GAA), Genetic Programming (GP...

متن کامل

Neural network-based survey analysis of risk management practices in new product development

The current study investigates the applicability of Artificial Neural Networks (ANNs) to analyse survey data on the effectiveness of risk management practices in product development (PD) projects, and its ability to forecast project outcomes. Moreover, this study presents the relations between risk management factors affecting the success of a PD project, such as cost. ANNs were chosen due to t...

متن کامل

Sensitivity analysis of the effective nanofluid parameters flowing in flat tubes using the EFAST method

In the present study, the effective parameters of water-Al2O3 nanofluid flowing in flat tubes are investigated using the EFAST Sensitivity Analysis (SA) method. The SA is performed using GMDH type artificial neural networks (ANN) which are based on validated numerical data of two phase modeling of nanofluid flow in flat tubes. There are five design variables namely: tube flattening (H), flow ra...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999